MTHFD1 interaction with BRD4 links folate metabolism to transcriptional regulation
نویسندگان
چکیده
منابع مشابه
Brd4 links chromatin targeting to HPV transcriptional silencing.
The E2 protein encoded by human papillomaviruses (HPVs) inhibits expression of the viral E6 oncoprotein, which, in turn, regulates p53 target gene transcription. To identify cellular proteins involved in E2-mediated transcriptional repression, we isolated an E2 complex from human cells conditionally expressing HPV-11 E2. Surprisingly, the double bromodomain-containing protein Brd4, which is imp...
متن کاملBrd4 engagement from chromatin targeting to transcriptional regulation: selective contact with acetylated histone H3 and H4
Bromodomain-containing protein 4 (Brd4) contains two tandem bromodomains (BD1 and BD2) that bind preferentially to acetylated lysine residues found in histones and nonhistone proteins. This molecular recognition allows Brd4 to associate with acetylated chromatin throughout the cell cycle and regulates transcription at targeted loci. Recruitment of positive transcription elongation factor b, and...
متن کاملTranscriptional regulation and metabolism.
Understanding organisms from a systems perspective is essential for predicting cellular behaviour as well as designing gene-metabolic circuits for novel functions. The structure, dynamics and interactions of cellular networks are all vital components of systems biology. To facilitate investigation of these aspects, we have developed an integrative technique called network component analysis, wh...
متن کاملTranscriptional regulation of metabolism.
Our understanding of metabolism is undergoing a dramatic shift. Indeed, the efforts made towards elucidating the mechanisms controlling the major regulatory pathways are now being rewarded. At the molecular level, the crucial role of transcription factors is particularly well-illustrated by the link between alterations of their functions and the occurrence of major metabolic diseases. In additi...
متن کاملThe regulation of folate and methionine metabolism.
1. The isolated perfused rat liver and suspensions of isolated rat hepatocytes fail to form glucose from histidine, in contrast with the liver in vivo. Both rat liver preparations readily metabolize histidine. The main end product is N-formiminoglutamate. In this respect the liver preparations behave like the liver of cobalamin- or folate-deficient mammals. 2. Additions of L-methionine in physi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Genetics
سال: 2019
ISSN: 1061-4036,1546-1718
DOI: 10.1038/s41588-019-0413-z